support-banner
Antenna Customization
End-to-End Engineering for Optimal Performance Debugging & Prototyping Process
Prototyping Process

This standardized process ensures efficient concept-to-product transition through a simulation-driven design, rapid iteration, and reliable mass production framework.

Stage 1:
Requirement Finalization & Design
1.1 Requirement Analysis Meeting
  • IoT devices, 5G base stations, radar systems, medical equipment
  • Single/multi-band (e.g., 2.4+5 GHz or 28 GHz mmWave)
  • 3 dBi (omni) to 20 dBi (directional)
  • Linear (V/H) or circular polarization (RHCP/LHCP)
  • Max dimensions (e.g., 15×15×5 mm)
1.2 Simulation & Design

Tools: HFSS/CST/ADS for electromagnetic simulation

    Design Steps:

    • Initial structure design: Patch/IFA/slot antenna selection
    • Parameter tuning: Feedline width, ground plane slots, parasitic elements
    • Simulation validation: S11 curve (<-10 dB bandwidth),radiation efficiency (>60%), 3D radiation pattern
    2.1 Material & Process Confirmation

    Material Type / Applications

    • FR4 / Low-cost, low-frequency (<3 GHz)
    • Rogers 4350B / High-frequency/mmWave (5G/satellite)
    • Flexible substrates (PI/PET) / Wearables/curved surfaces
    2.2 Prototype Fabrication

    PCB Antennas:

    • Fabrication: 4-layer ENIG plating, impedance control ±10%
    • Assembly: 0402 components hand-soldered, X-ray inspection

    Structural Antennas:

    • Metallization: LDS or electroless nickel/gold plating
    2.3 Initial Testing

    VNA testing: Keysight PNA with probe-tip calibration

    • VSWR <2.0 in target band
    • Return loss S11 <-10 dB
    Stage 2:
    Prototyping & Initial Testing
    Stage 3:
    Debugging & Optimization
    3.1 Impedance Matching Tuning

    Tools

    • Smith Chart analysis
    • Copper tape modification

    Procedure

    • Tune series/parallel LC for 50Ω match
    • Test bandwidth extension with patches
    3.2 Radiation Performance Validation
    • Gain measurement: Reference horn antenna comparison
    • Radiation pattern: H/V-plane polar plots (3 dB beamwidth ≥120°)
    • Metal housing compensation: Decoupling structures/absorbers
    3.3 Issue Resolution

    Common Issues

    • Frequency shift
    • Insufficient bandwidth
    • Low efficiency

    Solutions

    • Tune radiator length ±0.2λ
    • Add parasitic elements/stub matching
    • Verify dielectric loss (low-tanδ material)
    Stage 4:
    Final Validation & Delivery
    4.1 Reliability Testing

    Test Items

    • Thermal cycling
    • Vibration test
    • Salt spray test

    Standards

    • -40℃~85℃, 5 cycles
    • 20G@10-2000 Hz, 3 axes ×1 hr
    • 5% NaCl, 96 hrs (outdoor models)
    4.2 Deliverables
    • Prototypes: 3-5 functional samples (with mounts/connectors)
    • Schematics/PCB Gerber files
    • Antenna Test Report (anechoic chamber data) Mass Production Guidelines (pad dimensions/tolerances)
    Stage 5:
    Mass Production Transition (Optional)
    5.1 Pilot Production
    • Process validation: FAI & CPK analysis (key dimensions ≥1.33)
    • Test jigs: Automated RF test fixtures (≤30 sec/unit)
    5.2 Special Antenna Considerations

    Antenna Type

    • mmWave antennas
    • Flexible antennas

    Key Requirements

    • Laser drilling ±0.02 mm, Ra<0.5μm
    • Bend test (10k cycles, R=3 mm)

    Leave a Message